2,876 research outputs found

    Soviet National Security Decision Making

    Get PDF
    Winston Churchill\u27s characterization of the Soviet Union as a riddle wrapped in a mystery inside an enigma may overstate Western understanding of the USSR\u27s national security decision-making. The evidence in this domain is sparse, and what we do have is incomplete. Indeed, the Soviets have taken extraordinary steps to maintain the black box that shields how and why their decisions are made. With these caveats in mind, knowledge of Soviet decision-making can be summed up in a few general statements. First, the Soviet leadership is an integrated political-military body, where political authority is dominant, but where the professional military retains an important influence. Second, the role of institutions and individuals varies within and between leaderships, according to the issue under consideration (e.g., doctrine, procurement, etc.), and between times of peace and war. The potential for evolution in the roles of institutions is particularly apparent in the current period of perestroika. Gorbachev has initiated changes that appear to be aimed at transforming the security decision-making apparatus. Finally, the historical record of decision-making in superpower crises indicates that the Soviet Union has been very cautious in confrontations with the United States, a tendency that need not prove true in future clashes

    Beyond Goldwater-Nichols

    Get PDF
    This report culminated almost two years of effort at CSIS, which began by developing an approach for both revisiting the Goldwater-Nichols Department of Defense Reorganization Act of 1986 and for addressing issues that were beyond the scope of that landmark legislation

    Graphene formation on SiC substrates

    Full text link
    Graphene layers were created on both C and Si faces of semi-insulating, on-axis, 4H- and 6H-SiC substrates. The process was performed under high vacuum (<10-4 mbar) in a commercial chemical vapor deposition SiC reactor. A method for H2 etching the on-axis sub-strates was developed to produce surface steps with heights of 0.5 nm on the Si-face and 1.0 to 1.5 nm on the C-face for each polytype. A process was developed to form graphene on the substrates immediately after H2 etching and Raman spectroscopy of these samples confirmed the formation of graphene. The morphology of the graphene is described. For both faces, the underlying substrate morphology was significantly modified during graphene formation; sur-face steps were up to 15 nm high and the uniform step morphology was sometimes lost. Mo-bilities and sheet carrier concentrations derived from Hall Effect measurements on large area (16 mm square) and small area (2 and 10 um square) samples are presented and shown to compare favorably to recent reports.Comment: European Conference on Silicon Carbide and Related Materials 2008 (ECSCRM '08), 4 pages, 4 figure

    Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1

    Get PDF
    Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of [?]1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the PYCR1 knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation- velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition.WeseeNADPHbound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination

    Evidence of discrete yellowfin tuna (Thunnus albacares) populations demands rethink of management for this globally important resource

    Get PDF
    Tropical tuna fisheries are central to food security and economic development of many regions of the world. Contemporary population assessment and management generally assume these fisheries exploit a single mixed spawning population, within ocean basins. To date population genetics has lacked the required power to conclusively test this assumption. Here we demonstrate heterogeneous population structure among yellowfin tuna sampled at three locations across the Pacific Ocean (western, central, and eastern) via analysis of double digest restriction-site associated DNA using Next Generation Sequencing technology. The differences among locations are such that individuals sampled from one of the three regions examined can be assigned with close to 100% accuracy demonstrating the power of this approach for providing practical markers for fishery independent verification of catch provenance in a way not achieved by previous techniques. Given these results, an extended pan-tropical survey of yellowfin tuna using this approach will not only help combat the largest threat to sustainable fisheries (i.e. illegal, unreported, and unregulated fishing) but will also provide a basis to transform current monitoring, assessment, and management approaches for this globally significant species

    Improvement of Morphology and Free Carrier Mobility through Argon-Assisted Growth of Epitaxial Graphene on Silicon Carbide

    Full text link
    Graphene was epitaxially grown on both the C- and Si-faces of 4H- and 6H-SiC(0001) under an argon atmosphere and under high vacuum conditions. Following growth, samples were imaged with Nomarski interference contrast and atomic force microscopies and it was found that growth under argon led to improved morphologies on the C-face films but the Si-face films were not significantly affected. Free carrier transport studies were conducted through Hall effect measurements, and carrier mobilities were found to increase and sheet carrier densities were found to decrease for those films grown under argon as compared to high vacuum conditions. The improved mobilities and concurrent decreases in sheet carrier densities suggest a decrease in scattering in the films grown under argon.Comment: 215th Meeting of the Electrochemical Society (ECS 215), 14 pages, 6 figure

    Hall Effect Mobility of Epitaxial Graphene Grown on Silicon Carbide

    Full text link
    Epitaxial graphene films were grown in vacuo by silicon sublimation from the (0001) and (000-1) faces of 4H- and 6H-SiC. Hall effect mobilities and sheet carrier densities of the films were measured at 300 K and 77 K and the data depended on the growth face. About 40% of the samples exhibited holes as the dominant carrier, independent of face. Generally, mobilities increased with decreasing carrier density, independent of carrier type and substrate polytype. The contributions of scattering mechanisms to the conductivities of the films are discussed. The results suggest that for near-intrinsic carrier densities at 300 K epitaxial graphene mobilities will be ~150,000 cm2V-1s-1 on the (000-1) face and ~5,800 cm2V-1s-1 on the (0001) face.Comment: Accepted for publication in Applied Physics Letters, 10 pages, 2 figure

    Morphology Characterization of Argon-Mediated Epitaxial Graphene on C-face SiC

    Full text link
    Epitaxial graphene layers were grown on the C-face of 4H- and 6H-SiC using an argon-mediated growth process. Variations in growth temperature and pressure were found to dramatically affect the morphological properties of the layers. The presence of argon during growth slowed the rate of graphene formation on the C-face and led to the observation of islanding. The similarity in the morphology of the islands and continuous films indicated that island nucleation and coalescence is the growth mechanism for C-face graphene.Comment: 12 pages, 4 figure
    corecore